
How to use clfsm with ROS-2

Vladimir Estivill-Castro
MiPal

August 11, 2024

Abstract

This document gets you started on using clfsm with ROS-2 (a similar document exists for
ROS-1). It can be used as a tutorial to gain an understanding of basic behaviours defined with
logic-labelled finite-state machines (llfsms). More sophisticated examples, like machines and
submachines that are suspended and restarted are possible, but this is a beginners guide.

Contents
1 Examples of logic-labelled finite-state machines using clfsm 1

1.1 The setup . 2

2 Machines with the ROS-2 turtlesim 4
2.1 Building the machine ros2_ping_pong.machine using MiEditLLFSM 4
2.2 How to compile clfsm machines with colcon . 5

2.2.1 Creating the package of the llfsm (package.xml) 5
2.2.2 The instructions for building/compiling (CMakeLists.txt) 6
2.2.3 Changes to an llfsm . 7
2.2.4 Building (compiling) an llfsm . 8

2.3 How to run clfsm machines once built with colcon 8
2.4 A machine that controls actuators: ros2_blind_turtle_bot.machine 9

2.4.1 Summary of compiling and running ros2_blind_turtle_bot.machine . . 11
2.5 ros2_wall_turtle_bot.machine: A machine for reactive behaviour: sensors

and actuators . 12
2.5.1 The sample ROS-service to publish the position of the turtle 14
2.5.2 The example llfsm where the turtle reacts to its position to the wall 15
2.5.3 Running the machine ros2_wall_turtle_bot.machine 17

2.6 A machine to suspend and re-start ros2_wall_turtle_bot.machine 18

1 Examples of logic-labelled finite-state machines using clfsm

To help you use clfsm with ROS-2 we have four examples. You can see the first two examples running
with ROS-1 in the short video www.youtube.com/watch?v=AJYA2hB4i9U&feature=youtu.be.

1. The first llfsm is a simple machine named ros2_ping_pong.machine that publishes ROS:messages.
We deswcribe how to build it and compile it appears in Subsection 2.1. Thus, the machine
RosTwoPingPongMachine is just a publisher. It loops between two states:

1

http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://www.youtube.com/watch?v=AJYA2hB4i9U&feature=youtu.be
http://wiki.ros.org/

How to use clfsm with ROS-2 MiPal

Figure 1: ros2_ping_pong.machine is a simple llfsm. If you have completed the ROS tutorials
and understand the semantics of llfsms you should be able to describe what it does before you
actually run it.

WAIT_AND_COUNT : where we see the variable count is incremented,

PUBLISH that actually performs the publishing.

Figure 1 shows a picture of this machine.

2. The second machine ros2_blind_turtle_bot.machine is a machine that actually in-
structs ROS’s turtlesim to walk around. This is a simple behaviour but has no use of sensors.
The behaviour controls actuators but does not collect any information from the environment.
It does so by publishing control messages to ROS’s turtlesim. Subsection 2.4 describes building
and running ros2_blind_turtle_bot.machine.

3. The third example is named ros2_wall_turtle_bot.machine and it does control the
ROS’s turtlesim with a reactive behaviour. The idea is that the turtle walks straight until
it is too close to the border of the simulation. When it gets too close, it drives back for a
bit, and turns for a bit. After that, it returns to the moving-forward state. A short video
illustrating this behaviour with ROS-1 is available at youtu.be/4txscEXN8lQ. Subsection 2.5
describes building and running ros2_wall_turtle_bot.machine.

4. In the fourth example we illustrate an arrangement of llfsms where two machines execute
concurrently (in fact in a sequential schedule), and one suspends and resumes the other.

1.1 The setup

This section assumes you have read the first 6 sections of the “How to use” document for MiEd-
itLLFSM”. This document should provide you further understanding of the structure of MiPal ’s
llfsms(MiEditLLFSM is a tool to build llfsms such as the ones used here; it can be downloaded
form mipal.net.au/downloads.php, and the “How to use” document for MiEditLLFSM”; from its
Section 7 it describes llfsms for Webots or the Nao robot that are not needed now and instead of ROS
they use the MiPal whiteboard infrastructure). MiEditLLFSM and the demonstration machines
have been tested on many version of Ubuntu and ROS, as far back as Ubuntu 14.04-64 bits and
ROS-Indigo. They were once tested on MacOS-Mavericks and ROS-hydro. Also, we assume you have
successfully installed ROS-2 and completed the beginners ROS tutorials. We have successfully ran this

(c) Vladimir Estivill-Castro Page 2 of 20

http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://youtu.be/4txscEXN8lQ
https://mipal.net.au/Downloads/MiEditLFSM/HowtoUse.pdf
https://mipal.net.au/Downloads/MiEditLFSM/HowtoUse.pdf
https://mipal.net.au
https://mipal.net.au/downloads.php
http://www.cyberbotics.com
http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/

How to use clfsm with ROS-2 MiPal

examples with Ubuntu 24.04 64-bit (jammy) and ROS-2 humble (moreover, we have tested
this in a native Intel machine, where the OS is identified as Linux-x86_64, and on a Mac with M1
and running UTM, in which case the OS is identified as Linux-aarch64. You can check your version
of Ubuntu with the command

lib_release -a

Thus, you should have a ROS-2 colcon workspace and be able to build ROS modules like in the
tutorials with

colcon build --packages-select <package_name>

Remember that a ROS-2 colcon workspace is nothing more than a directory with a sub-directory
named src and all packages are placed inside src. However, the build is performed just inside the
work package.

The MiPal llfsms are executed by a scheduler named clfsm. For ROS-2 we have produced a version
that does not use the MiPal whiteboard infrastructure (named gusimplewhiteboard) and thus, does
not depend on libdispatch.

The ROS-2 colcon workspace with sources of clfsm, and the library libclfsm are provided in the
MiPal downloads as
plain_clfsm_ws.tar.gz.
For illustration, we assume you will work on a workspace such as ros2_ws under your home directory.
Such a workspace is described as per the ROS-2 tutorials (Creating a workspace). However, you can
use a new or different workspace. Place the code in an accessible directory; here we place in our
$HOME directory, but you could leave it in your Downloads directory. We will be copying the packages
out. But you can also use this workspace as a place to work:

mv $HOME/Downloads/plain_clfsm_ws.tar.gz $HOME

You should extract the files with
gunzip plain_clfsm_ws.tar.gz

tar -xvf plain_clfsm_ws.tar

then move the packages from one workspace to the one used for work.
mv plain_clfsm_ws/src/libclfsm/ ros2_ws/src/
mv plain_clfsm_ws/src/clfsm/ ros2_ws/src/
ls ros2_ws/src/

should produce
clfsm
libclfsm

You are now in a position to build them (but as we mentioned you could have built them in the
workspace they came, just place yourself at the root of the workspace). We recommend to do one
package at a time, because despite the dependencies, colcon launches parallel building tasks that
not always conform to the dependencies.

cd ros2_ws
colcon build --packages-select libclfsm
colcon build --packages-select clfsm

If all building went correctly (despite many warnings), you should be able to see the dynamic library
ls install/libclfsm/lib

should show liblibclfsm.so and
ls install/clfsm/lib/clfsm

should show the executable clfsm.

(c) Vladimir Estivill-Castro Page 3 of 20

http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
https://mac.getutm.app
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Creating-A-Workspace/Creating-A-Workspace.html

How to use clfsm with ROS-2 MiPal

2 Machines with the ROS-2 turtlesim

2.1 Building the machine ros2_ping_pong.machine using MiEditLLFSM

Please attempt to construct ros2_ping_pong.machine using MiEditLLFSM although this ma-
chine is provided in the MiPal ROS-2 downlaods in the file clfsmRos2DemoMachines.tar.gz. For the
ros2_ping_pong.machine machine (Figure 1) you need the following includes, in the include
section of the machine.

#include " rc l cpp / rc l cpp . hpp"
#include "std_msgs/msg/ s t r i n g . hpp"
#include "CLMacros . h"

On the other hand, the variables section of this machine are as follows.

//
// ros2_ping_pong_Variables . h
//
//Automat ica l ly crea ted through MiEditCLFSM −− do not change manually !
//
int count ; ///<
r c l cpp : : Publ i sher<std_msgs : : msg : : Str ing >: : SharedPtr publ isher_ ; ///<
std : : shared_ptr<rc l cpp : : Node> node ; ///<

The machine ros2_ping_pong.machine was built with MiEditLLFSM (so we insist that is
good practice to use MiEditLLFSM). The INITIAL state is rather simple, it is just a set up. There
is just code for the OnEntry section of this state. There is a bit of work handling C-string versus
C++ strings. This code is C++ compatible.

int argc = 1 ; stat ic char ∗argv [1] ;
s td : : s t r i n g node_name="ros_ping_pong" ;
char ∗ c s t r = new char [node_name . l ength ()+1] ;
s td : : s t r cpy (c s t r , node_name . c_str ()) ;
argv [0]= c s t r ;

r c l cpp : : i n i t (argc , argv) ;
node = rc l cpp : : Node : : make_shared (node_name) ;
publ isher_ = node−>create_publ i sher<std_msgs : : msg : : Str ing >("pingpong" , 1 0) ;
count=0;

From INITIAL, we go to PUBLISH after one second; thus, the transition is after_ms(1000)1. The
state PUBLISH also has code only for the OnEntry section

auto message = std_msgs : : msg : : S t r ing () ;
s td : : s t r i ng s t r eam s s ;
s s << "The␣count␣ i s ␣" << count ;
message . data = s s . s t r () ;
RCLCPP_INFO(node−>get_logger () , " Pub l i sh ing : ␣'%s ' " , message . data . c_str ()) ;
publisher_−>pub l i sh (message) ;

The PUBLISH state alternates with the WAIT_AND_COUNT state with transitions of half a second
(500ms); that is, respective transitions after_ms(500). The state WAIT_AND_COUNT only has a
simple OnEntry section to increment the counter and to the also go back to PUBLISH after half a
second.

count++;

1This is why we need the include CLMacros.h

(c) Vladimir Estivill-Castro Page 4 of 20

http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/

How to use clfsm with ROS-2 MiPal

There is an accepting final state called END. The transitions to it are the test that ROS has finished
!rclcpp::ok(). Note that transitions with a common source state are sorted. In this machine the
transitions to END are before other transitions for all the states (INITIAL, WAIT_AND_COUNT and
WAIT_AND_COUNT) since as soon as ROS is not running we want the machine to reach the terminal
state.

2.2 How to compile clfsm machines with colcon

The demonstration logic-labelled finite-state machines of clfsm are a series of files, and thus, each
exmaple comes in a directory <machine_name>.machine. That is, they have an extension .machine.
The editor MiEditLLFSM manages machines by opening directories with this name format.

We now explain the assistance MiPal provides so you can set a machine as a colcon package and
compile them with the command

colcon build --packages-select <package_name>

Building executables in this manner will be familiar to you from ROS tutorials or projects. The instruc-
tions are detailed but generic for any llfsm. We use the first machine ros2_ping_pong.machine
for illustration but the process will be the same for the other machines.

We place each machine as a package. So we recommend that you do so in your colcon workspace.
For example, for the ros2_ping_pong.machine llfsm we recommend the following. Move to your
workspace

cd $HOME/ros2_ws/src

2.2.1 Creating the package of the llfsm (package.xml)

You create the package for the machine like any other package creation for ROS2.

ros2 pkg c r ea t e −−bui ld−type ament_cmake −−l i c e n s e Apache−2.0 ros2_ping_pong −−dependenc ies r c l cpp std_msgs c l f sm l i b c l f sm

We recommend to keep the name of the package the same as the name of the machine.
You can view the content of the package.xml file from the workspace directory as follows.

more ros2_ping_pong/package.xml
You notice that if you now go an edit the file package.xml as suggested in the ROS tutorials to add
a name and contact, you already find there are lines that indicate the required packages.

<depend>rclcpp</depend>
<depend>std_msgs</depend>
<depend>clfsm</depend>
<depend>libclfsm</depend>

Thus, in general, for another machine with name machineName, you create a package for the llfsm
as follows (recall that packages always go inside the src of the work space).
cd $HOME/ros2_ws/src
ros2 pkg create --build-type ament_cmake --license Apache-2.0 machineName --dependencies rclcpp clfsm libclfsm

Note that the command ros2 pkg create above is you must supply machineName. In more
elaborate llfsms where other packages participate, even more dependencies are indicated. It is
essential you specify the dependencies at the time of package creation, or latter editing the file
package.xml and adding lines of the form

<depend>package name the llfsm depends on </depend>
Place only necessary dependencies for compialtion. If executables are built, they can run and be
tested with ROS instrionspection even if theyr are designed to run with other nodes (we do not
recommend palcing other runs that are meant to execute simultaneously in the dependencies).

However, we said to you that the MiPal implementation of llfsms uses a directory

(c) Vladimir Estivill-Castro Page 5 of 20

http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
https://mipal.net.au

How to use clfsm with ROS-2 MiPal

machineName.machine

for all the source files. This has to be managed with colcon packages that separate include files in
a directory include and source files that are in a directory src. Thus, the package for a llfsms will
have the name of the machine as the name of the package and the following structure. For this first
llfsm the structure is as follows.

ros2_ws
src

ros2_ping_pong
package.xml
CMakeLists.txt
include
src
machine

ros2_ping_pong.machine
In general we propose that the package name is the same as the machine, and will look as follows.
workspace name

src
package name (same as machine name)

package.xml
CMakeLists.txt
include
src
machine

machine name .machine
Thus, once the package is created the next thing is to create a machine directory that is sibling

to the src and include directories of your package. Place you directory machineName.machine in
there

cd $HOME/ros2_ws/src
cd machineName
mkdir -p machine
mv path_to_machine /machineName .machine machine

2.2.2 The instructions for building/compiling (CMakeLists.txt)

To restructure the CMakeLists.txt file (this file is the main input to colcon to create a series of
cmake building tasks) we provide and assistance script.

Copy the assisting script machine_colcon_setup.sh (you can download machine_colcon_setup.sh
from theMiPal downloads mipal.net.au/downloads.php) into the machine directory as well. Depend-
ing of where you download machine_colcon_setup.sh, in what follows, the first command may be
different, and also, you may need to change its permissions to make it an executable script.

cp $HOME/Download/machine_colcon_setup.sh machine
cd machine
chmod ugo+x machine_colcon_setup.sh

Thus, now things look as follows (we are using green to show the new file).
ros2_ws

src
ros2_ping_pong

package.xml
CMakeLists.txt
include

(c) Vladimir Estivill-Castro Page 6 of 20

http://wiki.ros.org/
https://mipal.net.au
https://mipal.net.au
https://mipal.net.au/downloads.php

How to use clfsm with ROS-2 MiPal

src
machine

machine_colcon_setup.sh
ros2_ping_pong.machine

Since you just created the package, if you are inside machine the following commands will show
you almost empty directories.

../src

../include

The exception is the include directory that would show another subdirectory with the name of the
package (and thus of the machine), but this one on itself will be also empty.

Now, if you run the script
./machine_colcon_setup.sh MachineName .machine

and re-inspect the directories include and source you will see many files.
ros2_ws

install
src

ros2_ping_pong
package.xml
CMakeLists.txt
include

many files, usually .h
src

many files, usually .mm
machine

machine_colcon_setup.sh
ros2_ping_pong.machine
Amet_Suggested_CMakeLists_ros2_ping_pong.txt

As illustrated above, the script creates a file Amet_Suggested_CMakeLists_machineName.txt that
provides you with the hints of how to edit the CMakeLists.txt of the package of the machine in
order to complete configuring it for colcon. The script inspects whether you are running MacOS or
Ubuntu, and it will give you the suggestions so the resulting colcon package can be used in both.

The script is such that most of the time you can overwrite the file CMakeLists.txt of the package
by Amet_Suggested_CMakeLists_machineName.txt.

cp Amet_Suggested_CMakeLists_ros2_ping_pong.txt ../CMakeLists.txt

However, the script uses information about dependencies form the package.xml file; thus, that is
why it is essential the package.xml file be up to date about dependencies2

2.2.3 Changes to an llfsm

Many times you develop a llfsm in stages or there is a compilation error that needs fixing.
If you ever edit your llfsm with MiEditLLFSM making structural changes (add/delete a state or

transition, or add variables or include files), you need to run the script machine_colcon_setup.sh
again. This will update Amet_Suggested_CMakeLists_machineName.txt so additional files are set

2. For our running example this is not an issue, but for other machines with incompletely specified dependencies,
simply replacing CMakeLists.txt with Amet_Suggested_CMakeLists_machineName.txt will not work. If you created
the package with the correct dependencies, these will show in the form

find_package(a-dependency REQUIRED)
in your CMakeLists.txt file. Double check the dependencies in Amet_Suggested_CMakeLists_machineName.txt and
add missing ones before you overwrite CMakeLists.txt.

(c) Vladimir Estivill-Castro Page 7 of 20

http://wiki.ros.org/
https://mipal.net.au

How to use clfsm with ROS-2 MiPal

up for compilation and linking, but note that you need to overwrite CMakeLists.txt again
to update this file. If the changes are as simple as a syntax error on the code inside a state, it
may be easier to not use MiEditLLFSM and find the file in machineName.machine by the name
of the state (and whether it is in a transition or in a section of the state). You do not need to
overwrite CMakeLists.txt but you need to run the script machine_colcon_setup.sh again so the
src directory receives a fresh copy for compilation with your updates.

You also notice that in the structure above we have indicated a new directory install. This
directory is usually constructed during a successful building process. However, the script constructs
it, if it does not exist because it will create the path

install/package name /lib/package name machine/OS type

You probably need some expertise in colcon and on cmake to understand everything that goes
on in the CMakeLists.txt file. Suffice to say that during building, colcon will create a cmake
environment in a sibling directory named build. Then, each state of the llfsm is compiled separately
and then brought together into a dynamic library. The building by colcon usually leaves the results
in the sibling directory include.

2.2.4 Building (compiling) an llfsm

So we now proceed to compile.

$HOME/ros2_ws/
colcon build --packages-select ros2_ping_pong

This will produce your machine in
$HOME/ros2_ws/install/machineName /lib/libmachineName.some-Extension

where the extension depends on the operating system. Recall the script machine_colcon_setup.sh
should have also created a directory

$HOME/ros2_ws/install/machineName /lib/machineName.machine/some-OS-description

2.3 How to run clfsm machines once built with colcon

You must copy the compiled machine libmachineName.so with path
$HOME/ros2_ws/install/machineName /lib/libmachineName.so

into the directory
$HOME/ros2_ws/install/machineName /lib/machineName.machine/some-OS-description

The compilation should have called the appropriate linker to create a dynamic library with the correct
extension, thus in Ubuntu, this usually has a lib before the machineName and the extension ṡo.
So, you should remove the lib part. With our running example, in a native Intel Linux, you should
have

$HOME/ros2_ws/install/ros2_ping_pong/lib/ros2_ping_pong.machine/Linux-x86_64/ros2_ping_pong.so

or
$HOME/ros2_ws/install/ros2_ping_pong/lib/ros2_ping_pong.machine/Linux-aarch64/ros2_ping_pong.so

The impact of compilation and copying the dynamic library (in Ubunut) should result in a
structure as indicated in red below.

ros2_ws
install/ros2_ping_pong/lib/ros2_ping_pong.machine/OS_type /ros2_ping_pong.so
src

ros2_ping_pong
package.xml
CMakeLists.txt

(c) Vladimir Estivill-Castro Page 8 of 20

http://wiki.ros.org/
https://mipal.net.au

How to use clfsm with ROS-2 MiPal

include
src
machine

machine_colcon_setup.sh
ros2_ping_pong.machine

In another terminal, inside your package you can run the machine. First, go to the workspace.
cd /ros2_ws

Install the package
source install/setup.bash

Then you can run the executable of clfsm which you should have in
$HOME/ros2_ws/lib/clfsm/clfsm

providing as argument the directory
ros2 run clfsm clfsm install/lib/machineName.machine

You can explore how the machine is posting by investigating what topics are there, and then
eavesdropping into the topic.

ros2 topic list
ros2 topic info /pingpong
ros2 topic echo /pingpong

Use ctl-C to terminate clfsm. Alternatively, clfsm offers and option to trace in the terminal the
states it is going trough.

ros2 run clfsm clfsm -v install/lib/machineName.machine

2.4 A machine that controls actuators: ros2_blind_turtle_bot.machine

Now we demonstrate sending messages so that a robot does something; that is, a very simple ma-
chine that control the walking behaviour of ROS:turtlesim. This appears in the second part of the
video www.youtube.com/watch?v=AJYA2hB4i9U&feature=youtu.be and corresponds to the ma-
chine ros2_blind_turtle_bot.machine. Figure 2 shows the schematics of it.

The behaviour is simple, walk straight for a bit, then turn for a bit, and repeat these two states.
Please also attempt to build the machine from scratch using MiEditLLFSM. All states have only

OnEntry sections, except the END state, which is actually empty. The INITIAL state just initializes
the necessary ROS node similarly to our previous machine.

int argc = 1 ; stat ic char ∗argv [1] ;
s td : : s t r i n g node_name=" ros2_bl ind_turt le_bot " ;
char ∗ c s t r = new char [node_name . l ength ()+1] ;
s td : : s t r cpy (c s t r , node_name . c_str ()) ;
argv [0]= c s t r ;

r c l cpp : : i n i t (argc , argv) ;
node = rc l cpp : : Node : : make_shared (node_name) ;
publ isher_ = node−>create_publ i sher<geometry_msgs : : msg : : Twist>("/ t u r t l e 1 /cmd_vel" , 1 0) ;

msg = geometry_msgs : : msg : : Twist () ;

msg . l i n e a r . x = 0 . 0 ;
msg . l i n e a r . y = 0 . 0 ;
msg . l i n e a r . z = 0 . 0 ;
msg . angular . x = 0 . 0 ;
msg . angular . y = 0 . 0 ;
msg . angular . z = 0 . 0 ;

However, it already posts a geometry_msgs message to halt the turtlesim.
You may wish to explore the ROS documentation for the ROS:turtlesim to understand better some

of this values, although they should be somewhat understandable from their names. It also makes
more sense if we describe the variables global to all states.

(c) Vladimir Estivill-Castro Page 9 of 20

http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
http://www.youtube.com/watch?v=AJYA2hB4i9U&feature=youtu.be
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/

How to use clfsm with ROS-2 MiPal

Figure 2: ros2_blind_turtle_bot.machine is a simple llfsm. If you have completed the ROS
tutorials and understand the semantics of llfsms you should also be able to see that this machine is
a publisher, but now on the topic that sends control messages to the subscriber in ROS:turtlesim.
to describe what it does before you actually run it.

(c) Vladimir Estivill-Castro Page 10 of 20

http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
http://wiki.ros.org/

How to use clfsm with ROS-2 MiPal

//
// ros2_bl ind_turt le_bot_Variab les . h
//
//Automat ica l ly crea ted through MiEditCLFSM −− do not change manually !
//
r c l cpp : : Publ i sher<geometry_msgs : : msg : : Twist >: : SharedPtr publ isher_ ; ///<
std : : shared_ptr<rc l cpp : : Node> node ; ///<
geometry_msgs : : msg : : Twist msg ; ///<

And this data types from ROS require the corresponding include files.

#include " rc l cpp / rc l cpp . hpp"
#include "geometry_msgs/msg/ tw i s t . hpp"
#include "CLMacros . h"

The OnEntry part of state STRAIGHT sets up the linear speed of the X direction in the reference
frame of the robot to a value greater than zero, making the turtle simulator walk the turtle straight.
It publishes the corresponding message.

msg . l i n e a r . x = 2 . 0 ;
msg . angular . z = 0 . 0 ;

publisher_−>pub l i sh (msg) ;

TheOnEntry of the TURN_RIGHT state is very similar, but now is the angular seed that changes.

msg . l i n e a r . x = 0 . 0 ;
msg . angular . z = −2.0;

publisher_−>pub l i sh (msg) ;

All transitions are of one second after_ms(1000) except the transitions to END which test if ROS
is operational (!ros::ok()).

2.4.1 Summary of compiling and running ros2_blind_turtle_bot.machine

You can compile and build the machine using the colcon package approach and the help of the script
machine_colcon_setup.sh (see Section 2.2). Recall that the main steps are

1. Build a ROS-2 package indicating dependencies for clfsm and libclfsm
ros2 pkg create --build-type ament_cmake --license Apache-2.0 ros2_blind_turtle_bot --dependencies rclcpp clfsm libclfsm geometry_msgs

The create command here shows dependencies necessary for compilation, not for execution (that
is why turtlesim is not shown. The program will run, an you can echo its output, even if
turtlesim is not running.

2. Place the llfsm with extension .machine in a directory named machine
ros2_ws

src
ros2_blind_turtle_bot

package.xml
CMakeLists.txt
include
src
machine

(c) Vladimir Estivill-Castro Page 11 of 20

http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/

How to use clfsm with ROS-2 MiPal

machine_colcon_setup.sh
ros2_blind_turtle_bot.machine

that is sibling to the src and include of the package.

3. Use the script machine_colcon_setup.sh inside the directory machine to populate include and
src

4. Generate and examine the suggested file

Amet_Suggested_CMakeLists_ros2_blind_turtle_bot.txt

which usually replaces CMakeLists.txt (unless there are mode dependencies)
cd src/ros2_blind_turtle_bot/machine
./machine_colcon_setup.sh ros2_blind_turtle_bot.machine
cp Amet_Suggested_CMakeLists_ros2_blind_turtle_bot.txt ../CMakeLists.txt

5. From the workspace root directory use colcon to build

cd \$HOME/ros2_ws
colcon build --packages-select ros2_blind_turtle_bot

6. Copy (or move) the resulting dynamic library further down in the install directory and into a
path MachineName.machine/OS-Descritpion/Machinename.so. Here we use “\” to split the bash
command on two lines.

$ mv i n s t a l l / ros2_bl ind_turt le_bot / l i b / l ibros2_bl ind_turt l e_bot . so \
> i n s t a l l / ros2_bl ind_turt le_bot / l i b / ros2_bl ind_turt le_bot . machine/Linux−aarch64 / ros2_bl ind_turt le_bot . so

7. Run the machine after installing the ROS-2 packages with source instal/setup.bash (and maybe
other nodes like the turtlesim.

ros2 run clfsm clfsm -v install/ros2_blind_turtle_bot/lib/ros2_blind_turtle_bot.machine

You should observe the turtle making triangles as in the video
www.youtube.com/watch?v=AJYA2hB4i9U&feature=youtu.be.

2.5 ros2_wall_turtle_bot.machine: A machine for reactive behaviour:
sensors and actuators

ros2_wall_turtle_bot.machine is the third demonstration machine. It will require a bit
more work, as with llfsms , we use an approach to messages that gives preference to the get_Message
approach (a non-blocking polling approach), rather than a publisher-subscriber approach (where the
subscriber is highly couple with the publisher, or messages will be lost). The publisher-subscriber
also is demanding on resources because a call-back must be enacted for each messahed published.
For some more discussion on this you can see the paper “High Performance Relaying of C++11
Objects Across Processes and Logic-Labeled Finite-State Machines” [3]. llfsms can be executed
in time triggered fashion (even in microcontrolles [4]) and thus they are not event-driven, allowing
them to be used for formal verification, even during run-time [2] and checking real-time properties [6].
Suffice to say we have two approaches to relay the messages from a sender to a receiver through some
middleware (see Figure 3).

PUSH: (closer to event-driven) the receivers subscribe a call-back in the whiteboard. The posting
of a message by the sender spans new threads in the receivers.

(c) Vladimir Estivill-Castro Page 12 of 20

http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
http://www.youtube.com/watch?v=AJYA2hB4i9U&feature=youtu.be

How to use clfsm with ROS-2 MiPal

Whiteboard+

Sender+ Receiver+
Receiver+

Receiver+
Receiver+

Figure 3: The role of some middleware (or whiteboard) is to simplify the APIs of communication
between a sender of a message and the receivers.
PULL: (closer to time-triggered) receivers query the whiteboard for the latest from the sender. The

receiver, in its own thread, retrieves the message. The sender, in its own thread, just adds
messages.

From the perspective of software architectures, middleware provides the flexibility of a black-
board [5], which has also received names like broker. Thus, it is not surprising that this pattern has
also emerged as the CORBA standard (of the Object Management Group, OMG) with the aim of
facilitating communication on systems that are deployed on diverse platforms. In simple terms, these
types of infrastructures enable a sender to issue what we will refer to as an add_Message(msg : T)
which is a non-blocking call. In a sense, posting msg to the middleware is simple. Such a posting
may or may not include additional information, e.g. a sender signature, a timestamp, or an event
counter that records the belief the sender has of the currency of the message. But when it comes to
retrieving the message, there are essentially two modes.

subscribe(T, f): In a preliminary step, the receiver subscribes to messages of a certain type T (of
an implied class) and essentially goes to sleep. Subscription includes the name f of a function.
The middleware will notify the receiver of the message msg every time someone posts for the
given class T by invoking f(msg) (usually queued in a type T specific thread). This is typically
called Push technology.

get_Message(T): The receiver issues a get_Message to the middleware that supplies the latest msg
received so far for the type T . This is usually called Pull.

For example, ROS’ Push technology names a communication channel, a ROS::topic (corresponding
to what we call a named channel with a type). The modules posting or getting messages are called
nodes. Posting a message in ROS is also called publishing. In fact, there is another mechanism for
communication, called ROS-services, which is essentially a remote-procedure call, the requester/client
invokes though the middleware a function and obtains a data structure as a response (or a failure
signal) from a call-back in a server (we will construct a simple example in the next section) This
server functionality is called a service in ROS. In ROS-1, the client would invoke the service with a
blocking call. This leads to several issues, again, creating to much coupling between the client nad
the server [1]. As of ROS-2, the it is recommended that the client invokes the service with what ROS-2
calls Synchronous vs. asynchronous service clients. The problem is that in asynchronous services,
the client is not blocked but it is required to poll the readiness of a result. This seems to be still an
active evolving aspect of ROS2 version, and it is unclear what the client can do while waiting for the
response. Of more serious consequences is that in ROS-2, the scheduling of the client is forced to be
under the thread management of ROS-2 Executors. These ROS-2 Executors have a complex semantics.
Nevertheless, we are able to use the round-robin deterministic scheduler of MiPal ’s clfsm here.

(c) Vladimir Estivill-Castro Page 13 of 20

http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
https://docs.ros.org/en/humble/How-To-Guides/Sync-Vs-Async.html
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
https://docs.ros.org/en/humble/Concepts/Intermediate/About-Executors.html
http://wiki.ros.org/
https://mipal.net.au

How to use clfsm with ROS-2 MiPal

2.5.1 The sample ROS-service to publish the position of the turtle

Therefore, arrangements of llfsms have predefined schedules, that enable deterministic scheduling [7].
The execution of each state is a deterministic ringlet that evaluates the transition out of the current
state and decides whether transitions T fires (which result of the execution of the OnExit section
of the source state followed by the OnEntry section of the target state of T). If no transition fires,
the running the Internal section completes the ringlet and the turn passes to the next llfsms in the
arrangement in round-robin fashion.

For this model of execution, the machine that needs the sensor information cannot subscribe and
enable call-backs, but it queries an adapter of the position of the ROS-2 trutlesim. Thus, this
adapter will provide as a ROS-service the position of the turtle in the middleware enabled by ROS.
The workspace turtle_sensor_poster_ws provides two packages.

turtle_sensor_interface : This provides a custom data type for the client-server relationship the
llfsm is going to have with the posture of the turtlesim. The custom data type is in the file
TurtlePosition.srv.

float64 x
float64 y
float64 theta

turtle_sensor_poster : This is indeed a ROS-2 node that is both, a subscriber (to the topic of the
turtlesim that indicates the pose) and a service so it can answer request from clients about
the pose of the turtlesim as a TurtlePosition3.

With ROS-1 and catkin, it was easier to place and interface inside a package that was a node. It
seems more difficult with colcon; that is why we have two packages. For compiling the llfsms only
the interface would be a dependency.

The workspace turtle_sensor_poster_ws is distributed in the MiPal downloads for ROS-2. Fa-
miliarity with the tutorials for ROS:services will facilitate understanding what this does. Download
the package turtle_sensor_poster.tar.gz. You can copy each package to the workspace where
you are working (say ros2_ws) or you can leave them in their workspace.

Here, we show the steps to build and run in the workspace turtle_sensor_poster_ws. We
recommend that you perform the build in order.

cd turtle_sensor_poster_ws
colcon build --packages-select turtle_sensor_interface
colcon build --packages-select turtle_sensor_poster

You can test this sensor-wrapper. Run the turtlesim in in another terminal.
ros2 run turtlesim turtlesim_node

Also in another terminal install the package and run it.
cd turtle_sensor_poster_ws
source install/setup.bash
ros2 run turtle_sensor_poster turtle_sensor_poster_node

You can test that is working using the ROS-2 tools (also in another terminal)
3We invite you to inspect the code, which places the call-back for the service outside the class (this is consistent

with the ROS-2 tutorials 2 Write the service node. However, despite declaring it a static function in the class we
could not get the compiler to accept the function when passed to the construction of the client. This was possible
with ROS-1.

(c) Vladimir Estivill-Castro Page 14 of 20

http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Service-And-Client.html#write-the-service-node
http://wiki.ros.org/

How to use clfsm with ROS-2 MiPal

Figure 4: ros2_wall_turtle_bot.machine is a llfsm implementing a simple reactive be-
haviour. You can see this behaviour in action in the video youtu.be/4txscEXN8lQ.

ros2 service list
ros2 service type /turtle_pose_service
ros2 service call /turtle_pose_service turtle_sensor_interface/srv/TurtlePosition

You should see the (x, y) coordinates of the position of the turtle simulation. If you move the turtle
and call the service again, the coordinates will be updated.

Just recall that, in the terminal where you would compile the llfsm, it is going to be necessary to
install the interface.

2.5.2 The example llfsm where the turtle reacts to its position to the wall

This new machine (ros2_wall_turtle_bot.machine) appears in Figure 4. This llfsm will
depend on the interface package turtle_sensor_interface because the code will be the client.
The behaviour is sensing where the turtle is.

ros2 pkg c r ea t e −−bui ld−type ament_cmake −−l i c e n s e Apache−2.0 ros2_wall_turtle_bot −−dependenc ies r c l cpp c l f sm l i b c l f sm geometry_msgs tu r t l e_sen so r_ in t e r f a c e

Recall it is crucial to establish the dependencies correctly, and in particular in the file package.xml
of the package for the machine. The script that assist building the CMakeLists.txt file reads
package.xml.

Thus, this machine requires the following includes.

(c) Vladimir Estivill-Castro Page 15 of 20

http://wiki.ros.org/
https://mipal.net.au
http://youtu.be/4txscEXN8lQ

How to use clfsm with ROS-2 MiPal

#include " rc l cpp / rc l cpp . hpp"
#include "geometry_msgs/msg/ tw i s t . hpp"
#include "CLMacros . h"
#include " tu r t l e_s en so r_ in t e r f a c e / srv / tu r t l e_po s i t i o n . hpp"

Note that the turtle_sensor_interface is here so the llfsm can use calls to the corresponding
service.

The llfsm uses thr following variables.

//
// ros2_wal l_turt le_bot_Variab les . h
//
//Automat ica l ly crea ted through MiEditCLFSM −− do not change manually !
//
std : : shared_ptr<rc l cpp : : Node> node ; ///<
r c l cpp : : Publ i sher<geometry_msgs : : msg : : Twist >: : SharedPtr publ isher_ ; ///<
geometry_msgs : : msg : : Twist msg ; ///<
r c l cpp : : Cl ient<tu r t l e_sen so r_ in t e r f a c e : : s rv : : Tur t l ePos i t i on >: : SharedPtr c l i en t_ ; ///<
r c l cpp : : FutureReturnCode I_wait ; ///<
r c l cpp : : Cl ient<tu r t l e_sen so r_ in t e r f a c e : : s rv : : Tur t l ePos i t i on >: : SharedFuture r e s u l t ; ///<
f loat pos it ion_x ; ///<
f loat pos it ion_y ; ///<

The variable client_ is the client service, and it used as demonstrated in the ROS-2 tutorials.
Certainly different to ROS-1 is the variable result that in ROS-2 has the type

rclcpp::Client<turtle_sensor_interface::srv::TurtlePosition>::SharedFuture

since now we issue asynchronous calls. The variable I_wait is used to collect the status of the
asynchronous call (with some opaque semantics since it is not clear what the client can do between
the sync_send_request call and the spin_until_future_complete call4.

This machine has been kept simple, because as per the ROS-2 tutorials the code should check the
service is available and take some action (perhaps wait and try again several times). We avoid in
this example using wait_for_service(timeout_sec), since this blocks the client for as long as
timeout_sec (or for ever).

Most of the states and transitions should not as surprising given the previous machine. In fact, the
INITIAL is almost the same. The name of the node has changed and we have the the initialisation of
the client object.

int argc = 1 ; stat ic char ∗argv [1] ;
s td : : s t r i n g node_name=" ros2_wall_turt le_bot " ;
char ∗ c s t r = new char [node_name . l ength ()+1] ;
s td : : s t r cpy (c s t r , node_name . c_str ()) ;
argv [0]= c s t r ;

r c l cpp : : i n i t (argc , argv) ;
node = rc l cpp : : Node : : make_shared (node_name) ;
publ isher_ = node−>create_publ i sher<geometry_msgs : : msg : : Twist>("/ t u r t l e 1 /cmd_vel" , 1 0) ;
c l i en t_ = node−>crea t e_c l i en t<tu r t l e_sen so r_ in t e r f a c e : : s rv : : Tur t l ePos i t i on >(" tur t l e_pose_serv i c e ") ;

msg = geometry_msgs : : msg : : Twist () ;

msg . l i n e a r . x = 0 . 0 ;
msg . l i n e a r . y = 0 . 0 ;
msg . l i n e a r . z = 0 . 0 ;
msg . angular . x = 0 . 0 ;
msg . angular . y = 0 . 0 ;
msg . angular . z = 0 . 0 ;

States STRAIGHT and TURN_RIGHT are also just as before, and the state STOP just sets both
speeds to zero.

4The semantics of spin_until_future_complete is opaque indicating some form of blocking.

(c) Vladimir Estivill-Castro Page 16 of 20

http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/

How to use clfsm with ROS-2 MiPal

msg . l i n e a r . x = 0 . 0 ;
msg . angular . z = 0 . 0 ;

publisher_−>pub l i sh (msg) ;

auto r eque s t = std : : make_shared<tu r t l e_sen so r_ in t e r f a c e : : s rv : : Tur t l ePos i t i on : : Request >() ;

r e s u l t = cl ient_−>async_send_request (r eque s t) ;

I_wait = rc l cpp : : spin_unti l_future_complete (node , r e s u l t) ;

The state BACK sets the linear forward/backwards speed of the turtle to a negative value (remember
linear x is in the reference frame of the robot and is straight).

msg . l i n e a r . x = −2.0;
msg . angular . z = 0 . 0 ;

publisher_−>pub l i sh (msg) ;

Thus, the only trick is in the state TEST, where the position of the turtle in the space is recuperated.

pos it ion_x = r e s u l t . get ()−>x ;
pos i t ion_y = r e s u l t . get ()−>y ;

We arrive to this state after a successful retrieval of the data from the position service. That is, the
transition between STOP and TEST is

(I_wait == rc l cpp : : FutureReturnCode : : SUCCESS)

Note that if this transition fails then execution will end but first visiting the state StateSER-
VICE_FAILS. Read about ROS::services in the ROS tutorials if this is not clear.

The other interesting transition is the transition going out of TEST back to STRAIGHT.

posit ion_x >2.0 && posit ion_y >2.0 && posit ion_x< 9 .0 && pos it ion_y < 9 .0

This checks that the recent read positions for the turtle are well within the [0,10]×[0,10] environ-
ment. Thus, when the position is central to the environment, the turtle goes back to another
straight trajectory. Otherwise, after half a second, it performs the step-back (BACK) and turn
(TURN_RIGHT)before going back to STRAIGHT.

2.5.3 Running the machine ros2_wall_turtle_bot.machine

Thus, we are almost ready to run ros2_wall_turtle_bot.machine. It is compiled the same
way as the previous ones. You can use the approach of building a colcon package with the script
machine_colcon_setup.sh.
However, in this case we depend on one more package, so create the package for the machine as
follows.

ros2 pkg c r ea t e −−bui ld−type ament_cmake −−l i c e n s e Apache−2.0 ros2_wall_turtle_bot −−dependenc ies r c l cpp c l f sm l i b c l f sm geometry_msgs tu r t l e_sen so r_ in t e r f a c e

This will create the necessary dependencies list in the file package.xml. Follow the same process as
in Section 2.4.1; however, there is one more thing, we need to enable the compilation find the includes
for turtle_sensor_interface. You will see that the script with create a suggested CMakeLists.txt
that has a lines for

(find_package turtle_sensor_interface REQUIRED)
and

include_directories(${turtle_sensor_interface_INCLUDE_DIRS})
However, in the terminal where you are about to issue the colcon build command we recommend
that you visit first the turtle_sensor_poster_ws workspace and do the following.

(c) Vladimir Estivill-Castro Page 17 of 20

http://wiki.ros.org/
https://mipal.net.au
http://wiki.ros.org/
http://wiki.ros.org/

How to use clfsm with ROS-2 MiPal

cd turtle_sensor_poster_ws

and the build and install

colcon build --packages-select turtle_sensor_interface
source install/setup.bash

Then go back to the workspace where the machines are.
cd $HOME/ros2_ws

and build here (after you ran the script and overwrote CMakeLists.txt with the suggested version.

colcon build --packages-select ros2_wall_turtle_bot

Them, the colcon build, as usual, should compile this machine. Now just do the placing of the
result in

install/ros2_wall_turtle_bot/lib/libiros2_wall_turtle_bot.some-extension

to the target in install/ros2_wall_turtle_bot/lib/ros2_wall_turtle_bot.machine.machine.
Recall, this is still inside a directory with the name of the OS-type and without the prefix lib and
with the extension .so of it is Ubuntu.

mv install/ros2_wall_turtle_bot/lib/libros2_wall_turtle_bot.so install/ros2_wall_turtle_bot/lib/ros2_wall_turtle_bot.machine/Linux-aarch64/ros2_wall_turtle_bot.so

Now, open several terminals. In one, run the turtle simulator.
ros2 run turtlesim turtlesim_node

On a second one, we run the service (we have not said where you downloaded this, but go to the
workspace (the cd may require some prefix). Maybe build it, if already build just install.

cd turtle_sensor_poster_ws
colcon build --packages-select turtle_sensor_poster
source install/setup.bash

Now run.
ros2 run turtle_sensor_poster turtle_sensor_poster_node

Finally, the machine is executed in the third terminal.
cd $HOME/ros2_ws
source install/setup.bash
ros2 run clfsm clfsm install/ros2_wall_turtle_bot/lib/ros2_wall_turtle_not.machine

You should observe the behaviour as in the video youtu.be/4txscEXN8lQ.

2.6 A machine to suspend and re-start ros2_wall_turtle_bot.machine

Several llfsms can be executed concurrently in clfsm. When they are grouped this way they are
called an arrengement. Also, they can be suspended, restarted and resumed. One example is
ros2_turtle_suspend_resume.machine. The diagram of the machine appears in Fig. 5. We
emphasize that this machine makes use of

#include "CLMacros.h"

in its includes. This is important, observe the transitions like
is_suspended("RosBlindTurttleBot")

and
is_running("RosBlindTurttleBot")

. Also, we see the call in the state INITIAL to suspend the other machine
suspend("RosBlindTurttleBot");

(c) Vladimir Estivill-Castro Page 18 of 20

http://wiki.ros.org/
https://mipal.net.au
http://youtu.be/4txscEXN8lQ

How to use clfsm with ROS-2 MiPal

Figure 5: ros2_turtle_suspend_resume.machine is a llfsm that suspends and starts
ros2_wall_turtle_bot.machine.
While in the state RESUME

resume("RosBlindTurttleBot");

enables the other machine to continue. There are some important details about how scheduling with
clfsm happens of the OnEntry and OnExit of llfsms under these utilities and in general for an
arrangement of llfsms . The llfsms in the arrangement are executing in round-robin fashion, each
machine having a turn to the token of execution of a ringlet of its current state. A ringlet is to execute
the OnEntry section provided, execution is coming from another state, to evaluate all transitions
out in sequence and if one fires, the OnExit runs and the ringlet stops here. If no transition fires
the Internal section is executed and the ringlet stops.

If we are not coming from another state, the OnEntry does not get executed, the ringlet resumes
from evaluating the sequence of transitions.

This llfsm shows that all machines have a state SUSPENDED, and that any execution of a ringlet
in clfsm consists of checking if the machine with the token has been asked to be suspended. In
that case, the machine performs a transition to the SUSPENDED state as if it were any other state.
However, it will not get a turn on the round-robing until it moves out fo the SUSPENDED state.
The resume sends the machine back to the state from which it was suspended and re-executes its
OnEntry section. When suspended, a machine does not execute its OnExit. That is the only
exception of what suspension causes to a machine.

There are some important aspects of the execution of arrangements of llfsm with clfsm. To
use the features to suspend or resume (which means to go back to the state where the machine
was suspended), clfsm does not handle full ir relative paths. The machine alone has to be in the
command line. Therefore, to observe the effect of the suspend and resume you need to install in the
workspace directory.

cd $ros2_ws
source install setup.bash

We assume you copied the produced linked libraries as indicated. Thus, you need to get into the
directory where the machine that is to be installed is.

cd install/ros2_blind_turtle_bot/lib

Then you issue the run command with an absolute path for the first machine and a name only for
the second one.

ros2 run clfsm clfsm -v ../../../install/ros2_turtle_suspend_resume/lib/ros2_turtle_suspend_resume.machine
ros2_blind_turtle_bot.machine

You should oberve the turtlesim perform triangles of double the length as if ros2_blind_turtle_bot
was not suspended. That is, re-running with the following command

ros2 run clfsm clfsm -v ros2_blind_turtle_bot.machine

(c) Vladimir Estivill-Castro Page 19 of 20

http://wiki.ros.org/
https://mipal.net.au

How to use clfsm with ROS-2 MiPal

produces trajectories that are smaller triangles. This is because when a machine is sustpended and
the resumes, it is as if a nes OnEntry is executed in the arrival back to the state where it was
suspended. Thus, with the sustpended and resume, the turlesim receives double the comamnds to
go straigth and turn.

References
[1] V. Estivill-Castro and R. Hexel. Simple, not simplistic - the middleware of behaviour models. In

J. Filipe and Leszek A. Maciaszek, editors, ENASE 2015 - Proceedings of the 10th International
Conference on Evaluation of Novel Approaches to Software Engineering, Barcelona, Spain, 29-30
April, 2015, pages 189–196. SciTePress, 2015.

[2] V. Estivill-Castro and R. Hexel. Run-time verification of regularly expressed behavioral properties
in robotic systems with logic-labeled finite state machines. In 2016 IEEE International Conference
on Simulation, Modeling, and Programming for Autonomous Robots, SIMPAR, pages 281–288.
IEEE, December 13th-16th 2016.

[3] Vladimir Estivill-Castro, René Hexel, and Carl Lusty. High performance relaying of C++11 ob-
jects across processes and logic-labeled finite-state machines. In Davide Brugali, Jan F. Broenink,
Torsten Kroeger, and Bruce A. MacDonald, editors, Proceedings of the International Conference
on Simulation, Modelling, and Programming for Autonomous Robots (SIMPAR 2014), Lecture
Notes in Computer Science, vol 8810, pages 182–194, Cham, 2014. Springer International Pub-
lishing.

[4] F. Grubb, V. Estivill-Castro, and R. Hexel. LLFSMs on the PRU: Executable and verifiable
software models on a real-time microcontroller. In L. Borzemski, editor, 28th Annual International
Conference on Systems Engineering (ICSEng), LNNS, pages 391–402. Springer, December 14th-
16th 2021.

[5] Barbara Hayes-Roth. A blackboard architecture for control. Artificial intelligence, 26(3):251–321,
1985.

[6] C. McColl, V. Estivill-Castro, M. McColl, and R. Hexel. Verifiable executable models for de-
composable real-time systems. In L. Ferreira Pires, S. Hammoudi, and Seidewitz. e., editors,
Model-Driven Engineering and Software Development - 9th International Conference, MODEL-
SWARD 2022, pages 182–193. SCITEPRESS, February 6th-8th 2022.

[7] Callum McColl, Vladimir Estivill-Castro, Morgan McColl, and René Hexel. Decomposable and
executable models for verification of real-time systems. In Luís Ferreira Pires, Slimane Hammoudi,
and Edwin Seidewitz, editors, Revised papers form Model-Driven Engineering and Software Devel-
opment - 9th International Conference, MODELSWARD 2021, volume 1708 of Communications
in Computer and Information Science, pages 135–156. Springer, 2022.

(c) Vladimir Estivill-Castro Page 20 of 20

http://wiki.ros.org/
https://mipal.net.au

	Examples of logic-labelled finite-state machines using clfsm
	The setup

	Machines with the ROS-2 turtlesim
	Building the machine ros2_ping_pong.machine using MiEditLLFSM
	How to compile clfsm machines with colcon
	Creating the package of the llfsm (package.xml)
	The instructions for building/compiling (CMakeLists.txt)
	Changes to an llfsm
	Building (compiling) an llfsm

	How to run clfsm machines once built with colcon
	A machine that controls actuators: ros2_blind_turtle_bot.machine
	Summary of compiling and running ros2_blind_turtle_bot.machine

	ros2_wall_turtle_bot.machine: A machine for reactive behaviour: sensors and actuators
	The sample ROS-service to publish the position of the turtle
	The example llfsm where the turtle reacts to its position to the wall
	Running the machine ros2_wall_turtle_bot.machine

	A machine to suspend and re-start ros2_wall_turtle_bot.machine

